Forward and non-forward symplectic integrators in solving classical dynamics problems
نویسندگان
چکیده
منابع مشابه
Forward and non-forward symplectic integrators in solving classical dynamics problems
Forward time step integrators are splitting algorithms with only positive splitting coefficients. When used in solving physical evolution equations, these positive coefficients correspond to positive time steps. Forward algorithms are essential for solving time-irreversible equations that cannot be evolved using backward time steps. However, forward integrators are also better in solving timere...
متن کاملForward Symplectic Integrators for Solving Gravitational Few-Body Problems
We introduce a class of fourth order symplectic algorithms that are ideal for doing long time integration of gravitational few-body problems. These algorithms have only positive time steps, but require computing the force gradient in additional to the force. We demonstrate the efficiency of these Forward Symplectic Integrators by solving the circularly restricted three-body problem in the space...
متن کاملVariational collision integrators in forward dynamics and optimal control
The numerical simulation of multibody dynamics often involves constraints of various forms. First of all, we present a structure preserving integrator for mechanical systems with holonomic (bilateral) and unilateral contact constraints, the latter being in the form of a non-penetration condition. The scheme is based on a discrete variant of Hamilton’s principle in which both the discrete trajec...
متن کاملForward symplectic integrators and the long-time phase error in periodic motions.
We show that when time-reversible symplectic algorithms are used to solve periodic motions, the energy error after one period is generally two orders higher than that of the algorithm. By use of correctable algorithms, we show that the phase error can also be eliminated two orders higher than that of the integrator. The use of fourth order forward time step integrators can result in sixth order...
متن کاملSymplectic integrators for classical spin systems
We suggest a numerical integration procedure for solving the equations of motion of certain classical spin systems which preserves the underlying symplectic structure of the phase space. Such symplectic integrators have been successfully utilized for other Hamiltonian systems, e. g. for molecular dynamics or non-linear wave equations. Our procedure rests on a decomposition of the spin Hamiltoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Mathematics
سال: 2007
ISSN: 0020-7160,1029-0265
DOI: 10.1080/00207160701458476